Amazon cover image
Image from Amazon.com

A Conceptual Model for Designing Recycled Aggregate Concrete for Structural Applications [electronic resource] / by Marco Pepe.

By: Contributor(s): Material type: TextTextSeries: Springer Theses, Recognizing Outstanding Ph.D. ResearchPublisher: Cham : Springer International Publishing : Imprint: Springer, 2015Edition: 1st ed. 2015Description: XVII, 167 p. 118 illus., 27 illus. in color. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783319264738
Subject(s): Additional physical formats: Printed edition:: No titleDDC classification:
  • 691 23
Online resources: In: Springer eBooksSummary: This book reports on the physical and mechanical characterization of Recycled Aggregate Concrete (RAC), produced through a partial-to-total replacement of ordinary aggregates with what have been dubbed Recycled Concrete Aggregates (RCAs). It proposes a theoretical framework for understanding the relationships between RCAs and RCA, and for predicting the resulting behavior of RAC. The book demonstrates that in the case of RAC two additional parameters have to be taken into account than with ordinary aggregates, due to the composite nature and higher porosity of RCAs. By extending Abrams' Law for Recycled Aggregate Concrete, it represents a first step in the formulation of a general model for predicting the properties of RAC. The theoretical approach presented here addresses an important gap in the literature and is expected to stimulate new research on the use of this more sustainable form of concrete in structural applications.
No physical items for this record

This book reports on the physical and mechanical characterization of Recycled Aggregate Concrete (RAC), produced through a partial-to-total replacement of ordinary aggregates with what have been dubbed Recycled Concrete Aggregates (RCAs). It proposes a theoretical framework for understanding the relationships between RCAs and RCA, and for predicting the resulting behavior of RAC. The book demonstrates that in the case of RAC two additional parameters have to be taken into account than with ordinary aggregates, due to the composite nature and higher porosity of RCAs. By extending Abrams' Law for Recycled Aggregate Concrete, it represents a first step in the formulation of a general model for predicting the properties of RAC. The theoretical approach presented here addresses an important gap in the literature and is expected to stimulate new research on the use of this more sustainable form of concrete in structural applications.