Amazon cover image
Image from Amazon.com

Fracture mechanics : fundamentals and applications / T.L. Anderson.

By: Contributor(s): Material type: TextTextPublisher: Boca Raton : CRC Press/Taylor & Francis, [2017]Edition: Fourth editionDescription: 1 online resource (xvii, 661 pages) : illustrations (some colorContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781498728140 (electronic bk.)
  • 1498728146 (electronic bk.)
Subject(s): Additional physical formats: ebook version :: No title; No titleDDC classification:
  • 620.1/126 23
LOC classification:
  • TA409 .A49 2017
Online resources:
Contents:
Machine generated contents note: 1.History and Overview -- 1.1.Why Structures Fail -- 1.2.Historical Perspective -- 1.2.1.Early Fracture Research -- 1.2.2.The Liberty Ships -- 1.2.3.Postwar Fracture Mechanics Research -- 1.2.4.Fracture Mechanics from 1960 through 1980 -- 1.2.5.Fracture Mechanics from 1980 to the Present -- 1.3.The Fracture Mechanics Approach to Design -- 1.3.1.The Energy Criterion -- 1.3.2.The Stress Intensity Approach -- 1.3.3.Time-Dependent Crack Growth and Damage Tolerance -- 1.4.Effect of Material Properties on Fracture -- 1.5.A Brief Review of Dimensional Analysis -- 1.5.1.The Buckingham II Theorem -- 1.5.2.Dimensional Analysis in Fracture Mechanics -- References -- 2.Linear Elastic Fracture Mechanics -- 2.1.An Atomic View of Fracture -- 2.2.Stress Concentration Effect of Flaws -- 2.3.The Griffith Energy Balance -- 2.3.1.Comparison with the Critical Stress Criterion -- 2.3.2.Modified Griffith Equation -- 2.4.Energy Release Rate
Note continued: 2.5.Instability and the R Curve -- 2.5.1.Reasons for the R Curve Shape -- 2.5.2.Load Control versus Displacement Control -- 2.5.3.Structures with Finite Compliance -- 2.6.Stress Analysis of Cracks -- 2.6.1.The Stress Intensity Factor -- 2.6.2.Relationship between K and Global Behavior -- 2.6.3.Effect of Finite Size -- 2.6.4.Principle of Superposition -- 2.6.5.Weight Functions -- 2.7.Relationship between K and -- 2.8.Crack Tip Plasticity -- 2.8.1.The Irwin Approach -- 2.8.2.The Strip Yield Model -- 2.8.3.Comparison of Plastic Zone Corrections -- 2.8.4.Plastic Zone Shape -- 2.9.K-Controlled Fracture -- 2.10.Plane Strain Fracture: Fact versus Fiction -- 2.10.1.Crack Tip Triaxiality -- 2.10.2.Effect of Thickness on Apparent Fracture Toughness -- 2.10.3.Plastic Zone Effects -- 2.10.4.Implications for Cracks in Structures -- 2.11.Mixed-Mode Fracture -- 2.11.1.Propagation of an Angled Crack -- 2.11.2.Equivalent Mode I Crack -- 2.11.3.Biaxial Loading
Note continued: 2.12.Interaction of Multiple Cracks -- 2.12.1.Coplanar Cracks -- 2.12.2.Parallel Cracks -- Appendix 2A: Mathematical Foundations of Linear Elastic Fracture Mechanics: Selected Results -- References -- 3.Elastic-Plastic Fracture Mechanics -- 3.1.Crack Tip Opening Displacement -- 3.2.The J Contour Integral -- 3.2.1.Nonlinear Energy Release Rate -- 3.2.2.J as a Path-Independent Line Integral -- 3.2.3.J as a Stress Intensity Parameter -- 3.2.4.The Large-Strain Zone -- 3.2.5.Laboratory Measurement of J -- 3.3.Relationships between J and CTOD -- 3.4.Crack Growth Resistance Curves -- 3.4.1.Stable and Unstable Crack Growth -- 3.4.2.Computing J for a Growing Crack -- 3.5.J-Controlled Fracture -- 3.5.1.Stationary Cracks -- 3.5.2.J-Controlled Crack Growth -- 3.6.Crack Tip Constraint under Large-Scale Yielding -- 3.6.1.The Elastic T Stress -- 3.6.2.J-Q Theory -- 3.6.2.1.The J-Q Toughness Locus -- 3.6.2.2.Effect of Failure Mechanism on the J-Q Locus
Note continued: 3.6.3.Scaling Model for Cleavage Fracture -- 3.6.3.1.Failure Criterion -- 3.6.3.2.The Jo Parameter -- 3.6.3.3.Three-Dimensional Effects -- 3.6.3.4.Application of the Model -- 3.6.4.Limitations of Two-Parameter Fracture Mechanics -- Appendix 3A: Mathematical Foundations of Elastic-Plastic Fracture Mechanics: Selected Results -- References -- 4.Dynamic and Time-Dependent Fracture -- 4.1.Dynamic Fracture and Crack Arrest -- 4.1.1.Rapid Loading of a Stationary Crack -- 4.1.2.Rapid Crack Propagation and Arrest -- 4.1.2.1.Crack Speed -- 4.1.2.2.Elastodynamic Crack Tip Parameters -- 4.1.2.3.Dynamic Toughness -- 4.1.2.4.Crack Arrest -- 4.1.3.Dynamic Contour Integrals -- 4.2.Creep Crack Growth -- 4.2.1.The C Integral -- 4.2.2.Short-Time versus Long-Time Behavior -- 4.2.2.1.The Ct Parameter -- 4.2.2.2.Primary Creep -- 4.3.Viscoelastic Fracture Mechanics -- 4.3.1.Linear Viscoelasticity -- 4.3.2.The Viscoelastic J Integral -- 4.3.2.1.Constitutive Equations
Note continued: 4.3.2.2.Correspondence Principle -- 4.3.2.3.Generalized J Integral -- 4.3.2.4.Crack Initiation and Growth -- 4.3.3.Transition from Linear to Nonlinear Behavior -- Appendix 4A: Dynamic Fracture Analysis: Selected Results -- References -- 5.Fracture Mechanisms in Metals -- 5.1.Ductile Fracture -- 5.1.1.Void Nucleation -- 5.1.2.Void Growth and Coalescence -- 5.1.3.Ductile Crack Growth -- 5.2.Cleavage -- 5.2.1.Fractography -- 5.2.2.Mechanisms of Cleavage Initiation -- 5.2.3.Mathematical Models of Cleavage Fracture Toughness -- 5.3.The Ductile-Brittle Transition -- 5.4.Intergranular Fracture -- Appendix 5A: Statistical Modeling of Cleavage Fracture -- References -- 6.Fracture Mechanisms in Nonmetals -- 6.1.Engineering Plastics -- 6.1.1.Structure and Properties of Polymers -- 6.1.1.1.Molecular Weight -- 6.1.1.2.Molecular Structure -- 6.1.1.3.Crystalline and Amorphous Polymers -- 6.1.1.4.Viscoelastic Behavior -- 6.1.1.5.Mechanical Analogs
Note continued: 6.1.2.Yielding and Fracture in Polymers -- 6.1.2.1.Chain Scission and Disentanglement -- 6.1.2.2.Shear Yielding and Crazing -- 6.1.2.3.Crack Tip Behavior -- 6.1.2.4.Rubber Toughening -- 6.1.2.5.Fatigue -- 6.1.3.Fiber-Reinforced Plastics -- 6.1.3.1.An Overview of the Failure Mechanisms -- 6.1.3.2.Delamination -- 6.1.3.3.Compressive Failure -- 6.1.3.4.Notch Strength -- 6.1.3.5.Fatigue Damage -- 6.2.Ceramics and Ceramic Composites -- 6.2.1.Microcrack Toughening -- 6.2.2.Transformation Toughening -- 6.2.3.Ductile Phase Toughening -- 6.2.4.Fiber and Whisker Toughening -- 6.3.Concrete and Rock -- References -- 7.Fracture Toughness Testing of Metals -- 7.1.General Considerations -- 7.1.1.Specimen Configurations -- 7.1.2.Specimen Orientation -- 7.1.3.Fatigue Precracking -- 7.1.4.Instrumentation -- 7.1.5.Side Grooving -- 7.2.KIc Testing -- 7.2.1.ASTM E399 -- 7.2.2.Limitations of E399 and Similar Standards -- 7.3.K-R Curve Testing -- 7.3.1.Specimen Design
Note continued: 7.3.2.Experimental Measurement of K-R Curves -- 7.4.J Testing of Metals -- 7.4.1.The Basic Test Procedure and JIc Measurements -- 7.4.2.J-R Curve Testing -- 7.4.3.Critical J Values for Unstable Fracture -- 7.5.CTOD Testing -- 7.6.Dynamic and Crack Arrest Toughness -- 7.6.1.Rapid Loading in Fracture Testing -- 7.6.2.KIa Measurements -- 7.7.Fracture Testing of Weldments -- 7.7.1.Specimen Design and Fabrication -- 7.7.2.Notch Location and Orientation -- 7.7.3.Fatigue Precracking -- 7.7.4.Post-Test Analysis -- 7.8.Testing and Analysis of Steels in the Ductile-Brittle Transition Region -- 7.9.Component Fracture Tests -- 7.9.1.Surface Crack Plate Specimens -- 7.9.2.SENT Specimens -- 7.10.Qualitative Toughness Tests -- 7.10.1.Charpy and Izod Impact Test -- 7.10.2.Drop Weight Test -- 7.10.3.Drop Weight Tear and Dynamic Tear Tests -- Appendix 7: Stress Intensity, Compliance, and Limit Load Solutions for Laboratory Specimens -- References
Note continued: 8.Fracture Testing of Nonmetals -- 8.1.Fracture Toughness Measurements in Engineering Plastics -- 8.1.1.The Suitability of K and J for Polymers -- 8.1.1.1.K-Controlled Fracture -- 8.1.1.2.]-Controlled Fracture -- 8.1.2.Precracking and Other Practical Matters -- 8.1.3.KIc Testing -- 8.1.4.J Testing -- 8.1.5.Experimental Estimates of Time-Dependent Fracture Parameters -- 8.1.6.Qualitative Fracture Tests on Plastics -- 8.2.Interlaminar Toughness of Composites -- 8.3.Ceramics -- 8.3.1.Chevron-Notched Specimens -- 8.3.2.Bend Specimens Precracked by Bridge Indentation -- References -- 9.Application to Structures -- 9.1.Linear Elastic Fracture Mechanics -- 9.1.1.KI for Part-Through Cracks -- 9.1.2.Influence Coefficients for Polynomial Stress Distributions -- 9.1.3.Weight Functions for Arbitrary Loading -- 9.1.4.Primary, Secondary, and Residual Stresses -- 9.1.5.A Warning about LEFM -- 9.2.The CTOD Design Curve -- 9.3.Elastic-Plastic J-Integral Analysis
Note continued: 9.3.1.The EPRI J-Estimation Procedure -- 9.3.1.1.Theoretical Background -- 9.3.1.2.Estimation Equations -- 9.3.1.3.Comparison with Experimental J Estimates -- 9.3.2.The Reference Stress Approach -- 9.3.3.Ductile Instability Analysis -- 9.3.4.Some Practical Considerations -- 9.4.Failure Assessment Diagrams -- 9.4.1.Original Concept -- 9.4.2.J-Based FAD -- 9.4.3.Approximations of the FAD Curve -- 9.4.4.Fitting Elastic-Plastic Finite Element Results to a FAD Equation -- 9.4.5.Application to Welded Structures -- 9.4.5.1.Incorporating Weld Residual Stresses -- 9.4.5.2.Weld Misalignment and Other Secondary Stresses -- 9.4.5.3.Weld Strength Mismatch -- 9.4.6.Primary versus Secondary Stresses in the FAD Method -- 9.4.7.Ductile Tearing Analysis with the FAD -- 9.4.8.Standardized FAD-Based Procedures -- 9.5.Probabilistic Fracture Mechanics -- Appendix 9: Stress Intensity and Fully Plastic J Solutions for Selected Configurations -- References
Note continued: 10.Fatigue Crack Propagation -- 10.1.Similitude in Fatigue -- 10.2.Empirical Fatigue Crack Growth Equations -- 10.3.Life Prediction -- 10.4.Crack Closure -- 10.4.1.A Closer Look at Crack Wedging Mechanisms -- 10.4.2.Effects of Loading Variables on Closure -- 10.5.The Fatigue Threshold -- 10.5.1.The Closure Model for the Threshold -- 10.5.2.A Two-Criterion Model -- 10.6.Variable-Amplitude Loading and Retardation -- 10.6.1.Linear Damage Model for Variable-Amplitude Fatigue -- 10.6.2.Cycle Counting and Histogram Construction -- 10.6.3.Reverse Plasticity at the Crack Tip -- 10.6.4.The Effect of Overloads and Underloads -- 10.6.5.Modeling Retardation and Variable-Amplitude Fatigue -- 10.7.Growth of Short Cracks -- 10.7.1.Microstructurally Short Cracks -- 10.7.2.Mechanically Short Cracks -- 10.8.Micromechanisms of Fatigue -- 10.8.1.Fatigue in Region II -- 10.8.2.Micromechanisms near the Threshold -- 10.8.3.Fatigue at High DeltaK Values
Note continued: 10.9.Fatigue Crack Growth Experiments -- 10.9.1.Crack Growth Rate and Threshold Measurement -- 10.9.2.Closure Measurements -- 10.9.3.A Proposed Experimental Definition of DeltaKeff -- 10.10.Damage Tolerance Methodology -- Appendix 10A: Application of the J Contour Integral to Cyclic Loading -- References -- 11.Environmentally Assisted Cracking in Metals -- 11.1.Corrosion Principles -- 11.1.1.Electrochemical Reactions -- 11.1.2.Corrosion Current and Polarization -- 11.1.3.Electrode Potential and Passivity -- 11.1.4.Cathodic Protection -- 11.1.5.Types of Corrosion -- 11.2.Environmental Cracking Overview -- 11.2.1.Terminology and Classification of Cracking Mechanisms -- 11.2.2.Occluded Chemistry of Cracks, Pits, and Crevices -- 11.2.3.Crack Growth Rate versus Applied Stress Intensity -- 11.2.4.The Threshold for EAC -- 11.2.5.Small Crack Effects -- 11.2.6.Static, Cyclic, and Fluctuating Loads -- 11.2.7.Cracking Morphology -- 11.2.8.Life Prediction
Note continued: 11.3.Stress Corrosion Cracking -- 11.3.1.The Film Rupture Model -- 11.3.2.Crack Growth Rate in Stage II -- 11.3.3.Metallurgical Variables That Influence SCC -- 11.3.4.Corrosion Product Wedging -- 11.4.Hydrogen Embrittlement -- 11.4.1.Cracking Mechanisms -- 11.4.2.Variables That Affect Cracking Behavior -- 11.4.2.1.Loading Rate and Load History -- 11.4.2.2.Strength -- 11.4.2.3.Amount of Available Hydrogen -- 11.4.2.4.Temperature -- 11.5.Corrosion Fatigue -- 11.5.1.Time-Dependent and Cycle-Dependent Behavior -- 11.5.2.Typical Data -- 11.5.3.Mechanisms -- 11.5.3.1.Film Rupture Models -- 11.5.3.2.Hydrogen Environment Embrittlement -- 11.5.3.3.Surface Films -- 11.5.4.The Effect of Corrosion Product Wedging on Fatigue -- 11.6.Experimental Methods -- 11.6.1.Tests on Smooth Specimens -- 11.6.2.Fracture Mechanics Test Methods -- References -- 12.Computational Fracture Mechanics -- 12.1.An Overview of Numerical Methods -- 12.1.1.The Finite Element Method
Note continued: 12.1.2.The Boundary Integral Equation Method -- 12.2.Traditional Methods in Computational Fracture Mechanics -- 12.2.1.Stress and Displacement Matching -- 12.2.2.Elemental Crack Advance -- 12.2.3.Contour Integration -- 12.2.4.Virtual Crack Extension: Stiffness Derivative Formulation -- 12.2.5.Virtual Crack Extension: Continuum Approach -- 12.3.The Energy Domain Integral -- 12.3.1.Theoretical Background -- 12.3.2.Generalization to Three Dimensions -- 12.3.3.Finite Element Implementation -- 12.4.Mesh Design -- 12.5.Linear Elastic Convergence Study -- 12.6.Analysis of Growing Cracks -- Appendix 12: Properties of Singularity Elements -- References -- 13.Practice Problems -- 13.1.Chapter 1 -- 13.2.Chapter 2 -- 13.3.Chapter 3 -- 13.4.Chapter 4 -- 13.5.Chapter 5 -- 13.6.Chapter 6 -- 13.7.Chapter 7 -- 13.8.Chapter 8 -- 13.9.Chapter 9 -- 13.10.Chapter 10 -- 13.11.Chapter 11 -- 13.12.Chapter 12.
No physical items for this record

Includes bibliographical references and index.

Machine generated contents note: 1.History and Overview -- 1.1.Why Structures Fail -- 1.2.Historical Perspective -- 1.2.1.Early Fracture Research -- 1.2.2.The Liberty Ships -- 1.2.3.Postwar Fracture Mechanics Research -- 1.2.4.Fracture Mechanics from 1960 through 1980 -- 1.2.5.Fracture Mechanics from 1980 to the Present -- 1.3.The Fracture Mechanics Approach to Design -- 1.3.1.The Energy Criterion -- 1.3.2.The Stress Intensity Approach -- 1.3.3.Time-Dependent Crack Growth and Damage Tolerance -- 1.4.Effect of Material Properties on Fracture -- 1.5.A Brief Review of Dimensional Analysis -- 1.5.1.The Buckingham II Theorem -- 1.5.2.Dimensional Analysis in Fracture Mechanics -- References -- 2.Linear Elastic Fracture Mechanics -- 2.1.An Atomic View of Fracture -- 2.2.Stress Concentration Effect of Flaws -- 2.3.The Griffith Energy Balance -- 2.3.1.Comparison with the Critical Stress Criterion -- 2.3.2.Modified Griffith Equation -- 2.4.Energy Release Rate

Note continued: 2.5.Instability and the R Curve -- 2.5.1.Reasons for the R Curve Shape -- 2.5.2.Load Control versus Displacement Control -- 2.5.3.Structures with Finite Compliance -- 2.6.Stress Analysis of Cracks -- 2.6.1.The Stress Intensity Factor -- 2.6.2.Relationship between K and Global Behavior -- 2.6.3.Effect of Finite Size -- 2.6.4.Principle of Superposition -- 2.6.5.Weight Functions -- 2.7.Relationship between K and -- 2.8.Crack Tip Plasticity -- 2.8.1.The Irwin Approach -- 2.8.2.The Strip Yield Model -- 2.8.3.Comparison of Plastic Zone Corrections -- 2.8.4.Plastic Zone Shape -- 2.9.K-Controlled Fracture -- 2.10.Plane Strain Fracture: Fact versus Fiction -- 2.10.1.Crack Tip Triaxiality -- 2.10.2.Effect of Thickness on Apparent Fracture Toughness -- 2.10.3.Plastic Zone Effects -- 2.10.4.Implications for Cracks in Structures -- 2.11.Mixed-Mode Fracture -- 2.11.1.Propagation of an Angled Crack -- 2.11.2.Equivalent Mode I Crack -- 2.11.3.Biaxial Loading

Note continued: 2.12.Interaction of Multiple Cracks -- 2.12.1.Coplanar Cracks -- 2.12.2.Parallel Cracks -- Appendix 2A: Mathematical Foundations of Linear Elastic Fracture Mechanics: Selected Results -- References -- 3.Elastic-Plastic Fracture Mechanics -- 3.1.Crack Tip Opening Displacement -- 3.2.The J Contour Integral -- 3.2.1.Nonlinear Energy Release Rate -- 3.2.2.J as a Path-Independent Line Integral -- 3.2.3.J as a Stress Intensity Parameter -- 3.2.4.The Large-Strain Zone -- 3.2.5.Laboratory Measurement of J -- 3.3.Relationships between J and CTOD -- 3.4.Crack Growth Resistance Curves -- 3.4.1.Stable and Unstable Crack Growth -- 3.4.2.Computing J for a Growing Crack -- 3.5.J-Controlled Fracture -- 3.5.1.Stationary Cracks -- 3.5.2.J-Controlled Crack Growth -- 3.6.Crack Tip Constraint under Large-Scale Yielding -- 3.6.1.The Elastic T Stress -- 3.6.2.J-Q Theory -- 3.6.2.1.The J-Q Toughness Locus -- 3.6.2.2.Effect of Failure Mechanism on the J-Q Locus

Note continued: 3.6.3.Scaling Model for Cleavage Fracture -- 3.6.3.1.Failure Criterion -- 3.6.3.2.The Jo Parameter -- 3.6.3.3.Three-Dimensional Effects -- 3.6.3.4.Application of the Model -- 3.6.4.Limitations of Two-Parameter Fracture Mechanics -- Appendix 3A: Mathematical Foundations of Elastic-Plastic Fracture Mechanics: Selected Results -- References -- 4.Dynamic and Time-Dependent Fracture -- 4.1.Dynamic Fracture and Crack Arrest -- 4.1.1.Rapid Loading of a Stationary Crack -- 4.1.2.Rapid Crack Propagation and Arrest -- 4.1.2.1.Crack Speed -- 4.1.2.2.Elastodynamic Crack Tip Parameters -- 4.1.2.3.Dynamic Toughness -- 4.1.2.4.Crack Arrest -- 4.1.3.Dynamic Contour Integrals -- 4.2.Creep Crack Growth -- 4.2.1.The C Integral -- 4.2.2.Short-Time versus Long-Time Behavior -- 4.2.2.1.The Ct Parameter -- 4.2.2.2.Primary Creep -- 4.3.Viscoelastic Fracture Mechanics -- 4.3.1.Linear Viscoelasticity -- 4.3.2.The Viscoelastic J Integral -- 4.3.2.1.Constitutive Equations

Note continued: 4.3.2.2.Correspondence Principle -- 4.3.2.3.Generalized J Integral -- 4.3.2.4.Crack Initiation and Growth -- 4.3.3.Transition from Linear to Nonlinear Behavior -- Appendix 4A: Dynamic Fracture Analysis: Selected Results -- References -- 5.Fracture Mechanisms in Metals -- 5.1.Ductile Fracture -- 5.1.1.Void Nucleation -- 5.1.2.Void Growth and Coalescence -- 5.1.3.Ductile Crack Growth -- 5.2.Cleavage -- 5.2.1.Fractography -- 5.2.2.Mechanisms of Cleavage Initiation -- 5.2.3.Mathematical Models of Cleavage Fracture Toughness -- 5.3.The Ductile-Brittle Transition -- 5.4.Intergranular Fracture -- Appendix 5A: Statistical Modeling of Cleavage Fracture -- References -- 6.Fracture Mechanisms in Nonmetals -- 6.1.Engineering Plastics -- 6.1.1.Structure and Properties of Polymers -- 6.1.1.1.Molecular Weight -- 6.1.1.2.Molecular Structure -- 6.1.1.3.Crystalline and Amorphous Polymers -- 6.1.1.4.Viscoelastic Behavior -- 6.1.1.5.Mechanical Analogs

Note continued: 6.1.2.Yielding and Fracture in Polymers -- 6.1.2.1.Chain Scission and Disentanglement -- 6.1.2.2.Shear Yielding and Crazing -- 6.1.2.3.Crack Tip Behavior -- 6.1.2.4.Rubber Toughening -- 6.1.2.5.Fatigue -- 6.1.3.Fiber-Reinforced Plastics -- 6.1.3.1.An Overview of the Failure Mechanisms -- 6.1.3.2.Delamination -- 6.1.3.3.Compressive Failure -- 6.1.3.4.Notch Strength -- 6.1.3.5.Fatigue Damage -- 6.2.Ceramics and Ceramic Composites -- 6.2.1.Microcrack Toughening -- 6.2.2.Transformation Toughening -- 6.2.3.Ductile Phase Toughening -- 6.2.4.Fiber and Whisker Toughening -- 6.3.Concrete and Rock -- References -- 7.Fracture Toughness Testing of Metals -- 7.1.General Considerations -- 7.1.1.Specimen Configurations -- 7.1.2.Specimen Orientation -- 7.1.3.Fatigue Precracking -- 7.1.4.Instrumentation -- 7.1.5.Side Grooving -- 7.2.KIc Testing -- 7.2.1.ASTM E399 -- 7.2.2.Limitations of E399 and Similar Standards -- 7.3.K-R Curve Testing -- 7.3.1.Specimen Design

Note continued: 7.3.2.Experimental Measurement of K-R Curves -- 7.4.J Testing of Metals -- 7.4.1.The Basic Test Procedure and JIc Measurements -- 7.4.2.J-R Curve Testing -- 7.4.3.Critical J Values for Unstable Fracture -- 7.5.CTOD Testing -- 7.6.Dynamic and Crack Arrest Toughness -- 7.6.1.Rapid Loading in Fracture Testing -- 7.6.2.KIa Measurements -- 7.7.Fracture Testing of Weldments -- 7.7.1.Specimen Design and Fabrication -- 7.7.2.Notch Location and Orientation -- 7.7.3.Fatigue Precracking -- 7.7.4.Post-Test Analysis -- 7.8.Testing and Analysis of Steels in the Ductile-Brittle Transition Region -- 7.9.Component Fracture Tests -- 7.9.1.Surface Crack Plate Specimens -- 7.9.2.SENT Specimens -- 7.10.Qualitative Toughness Tests -- 7.10.1.Charpy and Izod Impact Test -- 7.10.2.Drop Weight Test -- 7.10.3.Drop Weight Tear and Dynamic Tear Tests -- Appendix 7: Stress Intensity, Compliance, and Limit Load Solutions for Laboratory Specimens -- References

Note continued: 8.Fracture Testing of Nonmetals -- 8.1.Fracture Toughness Measurements in Engineering Plastics -- 8.1.1.The Suitability of K and J for Polymers -- 8.1.1.1.K-Controlled Fracture -- 8.1.1.2.]-Controlled Fracture -- 8.1.2.Precracking and Other Practical Matters -- 8.1.3.KIc Testing -- 8.1.4.J Testing -- 8.1.5.Experimental Estimates of Time-Dependent Fracture Parameters -- 8.1.6.Qualitative Fracture Tests on Plastics -- 8.2.Interlaminar Toughness of Composites -- 8.3.Ceramics -- 8.3.1.Chevron-Notched Specimens -- 8.3.2.Bend Specimens Precracked by Bridge Indentation -- References -- 9.Application to Structures -- 9.1.Linear Elastic Fracture Mechanics -- 9.1.1.KI for Part-Through Cracks -- 9.1.2.Influence Coefficients for Polynomial Stress Distributions -- 9.1.3.Weight Functions for Arbitrary Loading -- 9.1.4.Primary, Secondary, and Residual Stresses -- 9.1.5.A Warning about LEFM -- 9.2.The CTOD Design Curve -- 9.3.Elastic-Plastic J-Integral Analysis

Note continued: 9.3.1.The EPRI J-Estimation Procedure -- 9.3.1.1.Theoretical Background -- 9.3.1.2.Estimation Equations -- 9.3.1.3.Comparison with Experimental J Estimates -- 9.3.2.The Reference Stress Approach -- 9.3.3.Ductile Instability Analysis -- 9.3.4.Some Practical Considerations -- 9.4.Failure Assessment Diagrams -- 9.4.1.Original Concept -- 9.4.2.J-Based FAD -- 9.4.3.Approximations of the FAD Curve -- 9.4.4.Fitting Elastic-Plastic Finite Element Results to a FAD Equation -- 9.4.5.Application to Welded Structures -- 9.4.5.1.Incorporating Weld Residual Stresses -- 9.4.5.2.Weld Misalignment and Other Secondary Stresses -- 9.4.5.3.Weld Strength Mismatch -- 9.4.6.Primary versus Secondary Stresses in the FAD Method -- 9.4.7.Ductile Tearing Analysis with the FAD -- 9.4.8.Standardized FAD-Based Procedures -- 9.5.Probabilistic Fracture Mechanics -- Appendix 9: Stress Intensity and Fully Plastic J Solutions for Selected Configurations -- References

Note continued: 10.Fatigue Crack Propagation -- 10.1.Similitude in Fatigue -- 10.2.Empirical Fatigue Crack Growth Equations -- 10.3.Life Prediction -- 10.4.Crack Closure -- 10.4.1.A Closer Look at Crack Wedging Mechanisms -- 10.4.2.Effects of Loading Variables on Closure -- 10.5.The Fatigue Threshold -- 10.5.1.The Closure Model for the Threshold -- 10.5.2.A Two-Criterion Model -- 10.6.Variable-Amplitude Loading and Retardation -- 10.6.1.Linear Damage Model for Variable-Amplitude Fatigue -- 10.6.2.Cycle Counting and Histogram Construction -- 10.6.3.Reverse Plasticity at the Crack Tip -- 10.6.4.The Effect of Overloads and Underloads -- 10.6.5.Modeling Retardation and Variable-Amplitude Fatigue -- 10.7.Growth of Short Cracks -- 10.7.1.Microstructurally Short Cracks -- 10.7.2.Mechanically Short Cracks -- 10.8.Micromechanisms of Fatigue -- 10.8.1.Fatigue in Region II -- 10.8.2.Micromechanisms near the Threshold -- 10.8.3.Fatigue at High DeltaK Values

Note continued: 10.9.Fatigue Crack Growth Experiments -- 10.9.1.Crack Growth Rate and Threshold Measurement -- 10.9.2.Closure Measurements -- 10.9.3.A Proposed Experimental Definition of DeltaKeff -- 10.10.Damage Tolerance Methodology -- Appendix 10A: Application of the J Contour Integral to Cyclic Loading -- References -- 11.Environmentally Assisted Cracking in Metals -- 11.1.Corrosion Principles -- 11.1.1.Electrochemical Reactions -- 11.1.2.Corrosion Current and Polarization -- 11.1.3.Electrode Potential and Passivity -- 11.1.4.Cathodic Protection -- 11.1.5.Types of Corrosion -- 11.2.Environmental Cracking Overview -- 11.2.1.Terminology and Classification of Cracking Mechanisms -- 11.2.2.Occluded Chemistry of Cracks, Pits, and Crevices -- 11.2.3.Crack Growth Rate versus Applied Stress Intensity -- 11.2.4.The Threshold for EAC -- 11.2.5.Small Crack Effects -- 11.2.6.Static, Cyclic, and Fluctuating Loads -- 11.2.7.Cracking Morphology -- 11.2.8.Life Prediction

Note continued: 11.3.Stress Corrosion Cracking -- 11.3.1.The Film Rupture Model -- 11.3.2.Crack Growth Rate in Stage II -- 11.3.3.Metallurgical Variables That Influence SCC -- 11.3.4.Corrosion Product Wedging -- 11.4.Hydrogen Embrittlement -- 11.4.1.Cracking Mechanisms -- 11.4.2.Variables That Affect Cracking Behavior -- 11.4.2.1.Loading Rate and Load History -- 11.4.2.2.Strength -- 11.4.2.3.Amount of Available Hydrogen -- 11.4.2.4.Temperature -- 11.5.Corrosion Fatigue -- 11.5.1.Time-Dependent and Cycle-Dependent Behavior -- 11.5.2.Typical Data -- 11.5.3.Mechanisms -- 11.5.3.1.Film Rupture Models -- 11.5.3.2.Hydrogen Environment Embrittlement -- 11.5.3.3.Surface Films -- 11.5.4.The Effect of Corrosion Product Wedging on Fatigue -- 11.6.Experimental Methods -- 11.6.1.Tests on Smooth Specimens -- 11.6.2.Fracture Mechanics Test Methods -- References -- 12.Computational Fracture Mechanics -- 12.1.An Overview of Numerical Methods -- 12.1.1.The Finite Element Method

Note continued: 12.1.2.The Boundary Integral Equation Method -- 12.2.Traditional Methods in Computational Fracture Mechanics -- 12.2.1.Stress and Displacement Matching -- 12.2.2.Elemental Crack Advance -- 12.2.3.Contour Integration -- 12.2.4.Virtual Crack Extension: Stiffness Derivative Formulation -- 12.2.5.Virtual Crack Extension: Continuum Approach -- 12.3.The Energy Domain Integral -- 12.3.1.Theoretical Background -- 12.3.2.Generalization to Three Dimensions -- 12.3.3.Finite Element Implementation -- 12.4.Mesh Design -- 12.5.Linear Elastic Convergence Study -- 12.6.Analysis of Growing Cracks -- Appendix 12: Properties of Singularity Elements -- References -- 13.Practice Problems -- 13.1.Chapter 1 -- 13.2.Chapter 2 -- 13.3.Chapter 3 -- 13.4.Chapter 4 -- 13.5.Chapter 5 -- 13.6.Chapter 6 -- 13.7.Chapter 7 -- 13.8.Chapter 8 -- 13.9.Chapter 9 -- 13.10.Chapter 10 -- 13.11.Chapter 11 -- 13.12.Chapter 12.

Electronic reproduction. Ann Arbor, MI Available via World Wide Web.

Description based on print version record.

Powered by Koha